Бесшумные блоки питания: FSP Zen и Topower TOP-420NF

Компьютерные блоки питания с пассивным охлаждением, некогда присутствовавшие разве что в компьютерах наиболее отчаянных энтузиастов, готовых ради тишины собственноручно дорабатывать готовые промышленные решения, постепенно стали вполне обычным явлением – многие производители блоков питания считают необходимым иметь в своей линейке одну-две безвентиляторных модели.

Разумеется, использование блока питания с пассивным охлаждением не решает в одночасье проблему шума компьютера – в нем все еще остаются процессор, видеокарта, материнская плата, жесткий диск... Однако проблемы охлаждения или шумоизоляции этих компонентов вполне решаются доступными способами – использованием корпусов с тихоходными 120-миллиметровыми вентиляторами (оставлять систему вообще без активного охлаждения всё же категорически неправильно и может привести к существенному снижению её надежности) и резиновыми звукопоглощающими прокладками под жесткими дисками, видеокарт с пассивным охлаждением, медных процессорных кулеров с тихоходными вентиляторами или же вообще систем жидкостного охлаждения. В результате даже после несложной доработки системы блок питания может легко оказаться самым шумным её компонентом.

Предлагаем Вашему вниманию детальное тестирование двух безвентиляторных блоков питания – производства FSP Group и Topower. Впрочем, полностью безвентиляторным является лишь один из них – но об этом ниже.

 

FSP Zen (FSP300-60GNF)

FSP Zen выглядит довольно непривычно по сравнению не только с обычными блоками питания, где мы привыкли видеть вентиляционные решетки вентиляторов, но и по сравнению с другими безвентиляторными блоками – как правило, они сразу обращают на себя внимание выступающими наружу объемистыми радиаторами, в то время как Zen представляет собой аккуратный параллелепипед без выступающих частей.

Большая часть корпуса блока закрыта вентиляционными решетками с довольно мелкой сеткой (вообще говоря, с технической точки зрения лучше было бы сделать сетку покрупнее). Охлаждение блока осуществляется исключительно за счет конвекции – теплый воздух из системного блока проходит через сетку в крышке блока и выходит наружу через его заднюю стенку.

Лишь сняв крышку, разглядеть внутренности блока невозможно – они почти полностью закрыты тремя внушительными радиаторами. Обратите внимание, что радиаторы по форме заметно отличаются от радиаторов в блоках с вентиляторным охлаждением – вместо относительно скромных пластинок с маленькими и часто расположенными тонкими рёбрами, здесь они представляют собой массивные алюминиевые болванки с толстыми рёбрами.

Верхние части радиаторов снимаются (все стыки тщательно промазаны термопастой), открывая нам внутреннее устройство блока:

Силовые полупроводниковые элементы в блоке разнесены не по двум, как это обычно бывает, а по трем радиаторам – на первых двух расположены элементы высоковольтной части блока (активный PFC, транзисторы основного и дежурного стабилизаторов), на третьем находятся диодные сборки выходных низковольтных выпрямителей. Отдельный перфорированный радиатор, расположенный перпендикулярно остальным, охлаждает диодный мостик на входе блока (греется мостик слабо, так что сверху к нему ничего не прикручивается – в этом нет необходимости).

Стоящий после PFC сглаживающий конденсатор – 270 мкФ на 450В – рассчитан на температуру 105°C, в то время как в обычных блоках на входе стоят 85-градусные конденсаторы. Такое решение понятно – сам конденсатор, конечно, греется слабо, но вот соседство с горячим радиатором в отсутствие заметных воздушных потоков могло бы плохо сказаться на сроке его службы. Рядом с конденсатором расположен весьма приличных размеров дроссель активного PFC. Дроссели сетевого фильтра на фотографии тоже можно разглядеть – они немного проглядывают между радиатором диодного мостика и задней стенкой блока; сетевой фильтр собран полностью, никаких претензий к нему нет.

Следующее, что обращает на себя внимание – выходные диодные сборки. В то время как в большинстве блоков для сильноточных применяют сборки типа Mospec S30D40C в крупных корпусах типа TO-247, то здесь все выходы обслуживаются диодными сборками Fairchild YM3045N (MBRP3045N) в корпусах TO-220, зато сборок этих – целая дюжина, по шесть штук с каждой стороны радиатора:

При первом взгляде, не разглядев ещё маркировку сборок, я подумал было, что разработчики решили использовать синхронный выпрямитель. Для читателей, не знакомых с электроникой, поясню: синхронным выпрямителем называется конструкция, в которой вместо диодов установлены полевые транзисторы, управляемые так, что при приходе положительной полуволны напряжения открывается один, а при приходе отрицательной – другой. Таким образом, транзисторы имитируют работу обычных диодов, но позволяют получить более высокий КПД – падение напряжения на диодах постоянно (около 0.7В для кремниевого диода, около 0.5В для диода Шоттки), а падение напряжения на транзисторах зависит от их типа – выбором транзисторов с минимальным сопротивлением в открытом состоянии мы можем существенно снизить падение напряжения, тем самым увеличив КПД выпрямителя.

Однако в Zen применены всё же обычные диоды – сборки (каждая рассчитана на ток до 30А, напряжение до 45В и температуру кристалла до 150°C) соединены попарно-параллельно для обеспечения необходимых токов нагрузки при высоких температурах.

И, наконец, последняя интересная особенность блока – обилие дросселей на тороидальных сердечниках на выходе однозначно указывает на независимую стабилизацию выходных напряжений. Напомню, что в классической схеме блока питания напряжение +3.3В имеет собственный вспомогательный стабилизатор на так называемом магнитном усилителе (основной деталью которого как раз и является дроссель), а напряжение +5В и +12В стабилизируются вместе, с помощью так называемого дросселя групповой стабилизации. Такое решение позволяет удешевить и упростить блок питания, но результат его работы несколько напоминает известный анекдот про среднюю температуру по больнице – в сумме эти напряжения стабилизированы, но, скажем, если растет нагрузка на шину +5В и это напряжение начинает "проседать", то тут же в качестве компенсации начинает расти напряжение +12В. В блоках же с независимой стабилизацией основной стабилизатор отслеживает только напряжение +12В, а вот +5В получаются с помощью такого же вспомогательного стабилизатора, как и +3.3В, в результате чего становятся практически независимы от +12В, и наоборот. Визуально такой блок легко отличить по наличию не двух, а трех крупных дросселей на выходе (отмечу в скобках, что в некоторых дешевых блоках дроссель может быть и вовсе один – групповой стабилизации).

Блок оборудован следующими шлейфами:

  • шлейф питания материнской платы с разъёмом 20+4 (4-контактная часть может отстегиваться от основного разъёма), длиной 38 см;
  • шлейф ATX12V с 4-контактным разъёмом, длиной 38 см;
  • два шлейфа с двумя разъёмами питания винчестеров каждый, длиной 38 см до первого разъёма и еще плюс 14 см – до второго. Разъёмы – приобретающий в последнее время популярность вариант с двумя "лепестками" по бокам, облегчающими извлечение;
  • шлейф с двумя разъёмами питания винчестеров и одним – дисковода, длиной 38 см до первого разъёма и далее по 14 см между разъёмами;
  • шлейф с двумя разъёмами питания S-ATA винчестеров, длиной 39 см до первого разъёма и еще плюс 14 см – до второго.

Из минусов можно отметить разве что небольшую длину проводов и отсутствие 6-контактного разъёма питания видеокарты, в остальном никаких претензий к блоку нет. Благодаря разборному 24-контактному разъёму блок одинаково легко подключается как к новым материнским платам, так и к старым, с 20-контактными разъёмами питания.

По заявленным токам блок соответствует стандарту ATX12V 2.0 – небольшая нагрузочная способность шин +5В и +3.3В с лихвой компенсируется 22-амперной шиной +12В (разделенной ограничителями тока на две части).

Самая интересная часть испытаний безвентиляторного блока – это, конечно, длительная работа под полной нагрузкой, то есть, в данном случае, 280Вт (мы нагружали только каналы +5В, +3.3В и +12В). В течение нескольких часов температура радиаторов блока непрерывно росла и наконец остановилась на отметке 90°C для самого горячего из них – радиатора с диодными сборками. Радиаторы высоковольтной части грелись меньше – впрочем, в сети с напряжением 110В радиатор активного PFC вполне может догнать радиатор с диодными сборками (как раз благодаря активному PFC блок способен работать в диапазоне напряжений 90...264В без каких-либо переключений).

С одной стороны, такая температура кажется весьма высокой, тем более что блок не был установлен в компьютер, а просто лежал на столе (установка в компьютер добавит к температуре воздуха еще градусов десять-пятнадцать). С другой стороны, пусть даже температура корпусов диодных сборок достигнет 125°C – при этом каждая из них всё ещё способна работать с током до 15А (по мере увеличения температуры корпуса сборки падает максимально допустимый для неё ток – это связано с тем, что 150°C – максимальная температура кристалла сборки, а не её корпуса, разница же температур между кристаллом и корпусом как раз зависит от тока; иначе говоря, при температуре корпуса 125°C и токе 15А температура кристалла как раз будет равна 150°C). Сборки соединены параллельно, следовательно, можно принять, что ток для такой "сборки из сборок" составит 22.5А (просто умножать токи на два при параллельном соединении не совсем правильно – если мы хотим обеспечить гарантию стабильной работы, то стоит считать, что каждый дополнительный параллельно включенный элемент увеличивает нагрузочную способность на 50-70%). Однако любой из выходных токов блока меньше 20А, а потому и в таких условиях никаких проблем не возникает.

Итак, максимально допустимую выходную мощность блок выдерживает без проблем. Перейдём к стабильности выходных напряжений в зависимости от распределения нагрузки по ним...

На диаграмме выше Вы видите область, внутри которой все основные выходные напряжения блока находятся в допустимых пределах, то есть плюс-минус 5% от номинала. По горизонтальной оси отложена нагрузка на шину +12В, по вертикальной – суммарная нагрузка на шины +5В и +3.3В (в каждой точке нагрузочный ток шины +3.3В составляет 50% от тока шины +5В – соответственно, мощность нагрузки по шине +3.3В составляет около одной четверти от общей нагрузки; такая ситуация вполне соответствует среднестатистическому современному компьютеру). Цветом обозначены отклонения напряжений от номинала в процентах, расшифровка цветов дана в легенде в правом верхнем углу диаграммы.

FSP Zen показал вполне предсказуемый результат для блока с независимой стабилизацией напряжений – напряжение +5В отклоняется от номинала менее чем 1%, напряжения +3.3В и +12В – всего лишь на 2% при любых допустимых нагрузках. Область же, в которой блок обеспечивает требуемые значения выходных напряжений, ограничивается лишь максимально допустимыми нагрузками.

Из минусов – совершенно некритичных, впрочем – можно отметить разве что нестабильную работу блока при очень сильном перекосе нагрузок (например, при нагрузке 250Вт на шине +12В и менее 7Вт на шине +5В у него срабатывает защита), по этой причине график несколько отодвинулся от осей координат – обычно я начинаю тестирование с минимальной мощности 5Вт, здесь же она была немного увеличена. Впрочем, в реальном компьютере настолько сильный перекос возникнуть не может.

Следующий интересующий нас параметр блока – высокочастотные пульсации на его выходе. Здесь, как выяснилось, результат сильно зависит от того, как именно мы нагружаем блок – при увеличении нагрузки по шине +5В пульсации быстро росли. Ниже приведена осциллограмма при нагрузке 280Вт на весь блок, из которых 100Вт приходятся на +5В и ещё 20Вт на +3.3В:

Пульсации на шине +5В достигли 75 мВ, что в полтора раза превосходит допустимый предел. Однако, если снизить нагрузка на шину +5В до 70Вт, то блок моментально "успокаивается":

Здесь уже пульсации не превышают положенных 50 мВ. Если же перенести всю нагрузку на шину +12В, то они и вовсе практически пропадают – очевидно, что блок заточен именно под такой вариант. Впрочем, для ATX12V 2.0 модели это и не удивительно.

Измерения скорости вращения вентилятора блока по понятной причине произвести не удалось, а вот замеры КПД и коэффициента мощности были сделаны. В описании блока FSP обещает КПД не менее 89% -- и, действительно, не обманывает:

В максимуме КПД достигает 89.3%, что является отличным показателем. Впрочем, ещё раз напомню, что мы проводим тестирование при питании от сети 220В – если же включить блок в сеть 110В, то КПД упадет из-за возрастания потерь в цепях активного PFC. Таким образом, FSP Group, похоже, несколько лукавит – блок действительно достигает КПД 89%, но – только в сетях с 220-вольтовым питанием.

Коэффициент мощности же невысок (для активного PFC, разумеется) – он лишь едва превысил 0.95, в то время как вообще теоретически активный PFC позволяет достигать КМ до 0.99. Впрочем, по сравнению с блоками без PFC вообще (КМ около 0.65-0.7) и блоками с пассивным PFC (КМ около 0.7-0.75) и такой результат весьма неплох.

Здесь мне хотелось бы лишний раз отметить ошибку, часто допускаемую не только пользователями, но и многими моими коллегами – связывать коэффициент мощности с КПД категорически неправильно. Я располагаю их на одном графике лишь из-за удобства как для читателей (эти величины имеют одинаковый масштаб и хорошо уживаются рядом), так и для самого себя (обе величины измеряются одной и той же установкой), но, тем не менее, это два совершенно независимых показателя. Коэффициент мощности невозможно вычислить, зная КПД – ни с помощью простых формул, ни с помощью сложных формул, вообще никак; более того, для вычисления коэффициента мощности КПД вообще не требуется.

Итак, FSP Zen – весьма интересный вариант безвентиляторного блока питания. Несмотря на отсутствие каких-либо внешних радиаторов, он вполне успешно функционирует под полной нагрузкой (хотя, конечно, корпус системного блока над ним назвать прохладным будет трудно...). Блок может работать при напряжении сети от 90В до 264В без каких-либо переключателей, что будет интересно проживающим в сельской местности и небольших городах, где стабильность питающей сети оставляет желать лучшего. Имея дополнительную стабилизацию выходных напряжений, блок обеспечивает великолепную их стабильность при любых допустимых нагрузках, а нагрузочной способности шины +12В вполне хватит для питания большинства современных компьютеров среднего уровня и даже несколько выше. Разумеется, на систему с двумя видеокартами уровня GF7800 его уже не хватит – но перед владельцем подобного комплекта проблема шума блока питания встает далеко не в первую очередь...

Из недостатков блока можно отметить не слишком длинные провода и большой уровень пульсаций при работе с 5-вольтовой нагрузкой. Последнее, впрочем, для современных систем большого значения уже не имеет – основная нагрузка в них приходится на шину +12В.

Topower TOP-420NF

Как гласит надпись на картонной коробке, в которой поставляется данный блок, TOP-420NF – это "Fanless Enhanced Cooling Power Supply". Обращать внимание здесь надо на слова "enhanced cooling", а точнее – на то, что за ними скрывается самый обычный 80-миллиметровый вентилятор, установленной на передней (в собранном компьютере она оказывается внутри) стенке блока питания. Но почему же тогда "fanless"? А потому что, по уверению производителя, вентилятор включается лишь при нагрузке 250Вт и больше, а в остальное время он совершенно бесшумен. При необходимости вентилятор можно включить кнопкой на корпусе, но тогда он будет работать только на максимальных оборотах.

Компания Topower знакома многим не столько под собственной торговой маркой, сколько по блокам питания OCZ и be quiet! – именно она делает блоки для этих уважаемых компаний. И в TOP-420NF легко угадываются знакомые черты – темный блестящий корпус, шлейф питания видеокарты с напаянным на разъём LC-фильтром и экранированием, зачерненные радиаторы с мелким частым оребрением...

В отличие от FSP Zen, в этом блоке есть и радиатор, вынесенный наружу – его внутренняя часть имеет Г-образную форму, надевающуюся на радиатор с диодными сборками. В остальном же конструкция блока более классическая, чем у Zen – судя по всему, перед нами не разработанное с нуля изделие, а адаптация уже существующего блока питания. Причем адаптация минимальная – так, используемые в блоке радиаторы с многочисленными мелкими рёбрышками и прорезями рассчитаны на принудительное охлаждение вентилятором, и даже внешний радиатор по непонятной причине имеет такую же конструкцию, в то время как для естественного пассивного охлаждения стоило бы использовать радиатор с крупными и редко расположенными рёбрами.

Кроме того, ребра радиаторов направлены внутрь блока питания, а не наружу, что еще более ухудшает эффективность пассивного охлаждения. Кроме того, внешний радиатор практически полностью перекрывает отверстие в задней стенке блока, а потому нагнетаемый включившимся вентилятором воздух по большей части выходит через отверстия в крышке блока – в результате блок не столько вытягивает горячий воздух из компьютера, сколько гоняет его по кругу.

В результате, как показало тестирование, вентилятор включается при нагрузке отнюдь не 250Вт, а почти вдвое меньше – через двадцать минут работы с нагрузкой 150Вт, когда температура радиатора с диодными сборками достигает примерно семидесяти градусов. В компьютере, где блок будет дополнительно подогреваться снизу теплым воздухом от процессора и видеокарты, вентилятор включится еще раньше.

Внешний радиатор закрыт защитной решеткой, но в общем это мера более декоративная, чем вынужденная – его температура даже при максимальной нагрузке не достигает и 60C, поэтому получить ожог будет трудно.

В остальном блок не представляет собой чего-либо особенного – это типовая схема на ШИМ-контроллере TL494 (он расположен на отдельной плате), без какого-либо PFC и без дополнительной стабилизации выходных напряжений.

Блок оборудован следующими шлейфами:

  • шлейф питания материнской платы с 20+4-контактным разъёмом (4-контактная часть при необходимости отстегивается, и разъём превращается в 20-контактный – это поможет при подключении блока к старым материнским платам), длиной 45 см;
  • шлейф с 4-контактным разъёмом ATX12V, длиной 47 см;
  • шлейф с 6-контактным разъёмом питания видеокарты, длиной 46 см, дополнительно оборудован LC-фильтром (два конденсатора по 10 мкФ, два конденсатора по 0.1 мкФ и ферритовое кольцо, надетое на провода);
  • два шлейфа с тремя разъёмами питания винчестеров и одним разъёмом питания дисковода каждый, длиной 49 см от блока до первого разъёма и далее по 15 см между разъёмами;
  • шлейф с четырьмя разъёмами питания S-ATA винчестеров, длиной 47 см до первого разъёма и далее по 15 см между разъёмами.

Шлейфы питания материнской платы убраны в плетеную трубочку, шлейф питания видеокарты – в гибкую пластиковую трубку (он имеет дополнительное экранирование, правда, не подключенное к "земле"), провода в остальных шлейфах закручены наподобие витой пары. Что же, с проводами ситуация у TOP-420NF лучше, чем у рассмотренного выше FSP Zen – они длиннее, а разъёмов на них – больше. Конечно, всегда можно воспользоваться переходниками – но приятнее всё же обходиться без них.

Формально блок относится к стандарту ATX12V 1.3 (несмотря на 24-контактный разъём питания материнской платы), но фактически этот стандарт не описывает блоки питания мощностью более 300Вт, а потому в данном случае можно лишь отметить, что TOP-420NF по всем пунктам его требования превосходит. С другой стороны, блок явно рассчитан на большую нагрузку по шине +5В, не имеющей принципиального значения для современных компьютеров, в то время как шина +12В у него имеет такую же допустимую нагрузку, как и у существенно менее мощного FSP Zen.

А вот кросс-нагрузочные характеристики блока выглядят уже не столь красиво... Во-первых, изрядно завышено напряжение +5В – в современных компьютерах, где потребление по этой шине редко превышает 30-40Вт, оно будет держаться на уровне 5.2-5.25В. Во-вторых, относительно сильно колеблются и напряжения +12В и +3.3В – впрочем, конечно, если сравнивать TOP-420NF с другими аналогичными по схемотехнике блоками, то он будет на нормальном среднем уровне, но, увы, на фоне идеальных графиков блока от FSP, имеющего раздельную дополнительную стабилизацию напряжений, он смотрится уже не столь красиво.

Пульсации напряжения при работе с полной нагрузкой оказались не слишком малы, но и не превысили допустимых значений – их размах составил около 45 мВ как на шине +5В (максимально допустимый – 50 мВ), так и на шине +12В (максимально допустимый – 120 мВ).

Как я уже отмечал выше, вентилятор блока питания в нашем случае включился при нагрузке 150Вт после 15-минутного прогрева блока. Скорость его при этом составила 1100 об/мин, при дальнейшем увеличении нагрузки она росла почти линейно:

Компания Topower заявляет, что шум вентилятора не превышает 22 дБ, а потому будет совершенно незаметен на фоне прочих шумов компьютера. Увы, это не совсем так – на максимальной скорости, достигающей 2560 об/мин, поток воздуха издает не сильный, но вполне хорошо заметный звук. В качестве вентилятора используется Yate Loon D80SH-12 на подшипниках скольжения.

КПД блока питания в максимуме достиг 82%, что также хуже показателей FSP Zen. Коэффициент мощности, как и у прочих блоков питания, не имеющих схем его коррекции, в среднем колеблется на уровне 0.65-0.68.

Таким образом, рассматривать TOP-420NF как безвентиляторный блок питания – несколько опрометчиво. Это не более чем обычный блок питания, регулировка скорости вращения вентилятора в котором настроена так, что при температуре радиаторов ниже определенного порога (около 70 градусов) вентилятор полностью выключается. Несколько помогает наличие внешнего радиатора, однако есть основания полагать, что при использовании более массивных радиаторов, рассчитанных в первую очередь на пассивное охлаждение, удалось бы достичь большей эффективности охлаждения без включения вентилятора. С другой стороны, одновременно уменьшив сопротивление потоку воздуха (в основном его оказывает внешний вентилятор – из-за него наружная стенка блока питания имеет очень маленькую площадь вентиляционных отверстий), можно было бы добиться и большей эффективности принудительного охлаждения, соответственно, снизив скорость вентилятора.

С другой стороны, если рассматривать TOP-420NF как обычный блок с пониженной шумностью, то претензии к нему заметно ослабляются – при маленькой нагрузке он действительно бесшумен, при ее возрастании производимый вентилятором шум также не слишком велик и для многих пользователей он будет малозаметен, а обеспечиваемые блоком электрические параметры находятся на среднем уровне. Правда, с такой точки зрения несколько спорной кажется уже цена этого блока, превышающая сотню долларов.

Заключение

В общем и целом, сказать ничего однозначно плохого ни про один из протестированных блоков нельзя – продукция как FSP Group, так и Topower отличается высоким качеством изготовления, а представленные образцы без труда демонстрируют заявленные электрические параметры.

Блок от FSP Group явно изначально проектировался как безвентиляторный, в то время как блок от Topower является доработкой обычного блока питания с активным охлаждением. В результате, если Zen можно рассматривать как действительно полностью бесшумный блок, то TOP-420NF – скорее как весьма тихий, но не бесшумный.

Более того, FSP Zen выглядит привлекательнее и по другим параметрам – большая нагрузочная способности шины +5В в современных компьютерах не востребована, а нагрузочная способность шины +12В у Zen даже теоретически не хуже, чем в TOP-420NF, а на практике скорее даже лучше, за счет меньших пульсаций и большей стабильности выходных напряжений. Таким образом, для создания бесшумного компьютера Zen выглядит более предпочтительным выбором по всем пунктам.

Категория: